Molecular Solutions for the Set-Partition Problem on Dna-Based Computing
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولOn Some Approximation Algorithms for the Set Partition Problem
We study the set partition problem, which is concerned with partitioning a collection of sets into P subcollections such that the maximum number of elements among all the subcollections is minimized. The problem is NP hard, even when P=2 and the cardinality of each set is 2. This special case is transferred to an edge partition problem for graphs. This paper evaluates the eeciency of diierent a...
متن کاملMolecular solutions for the subset-sum problem on DNA-based supercomputing.
In this paper our main purpose is to give molecular solutions for the subset-sum problem. In order to achieve this, we propose a DNA-based algorithm of an n-bit parallel adder and a DNA-based algorithm of an n-bit parallel comparator to formally verify our designed molecular solutions for the subset-sum problem.
متن کاملTowards solution of the set-splitting problem on gel-based DNA computing
Adleman wrote the first paper that demonstrated that DNA (DeoxyriboNucleic Acid) strands could be applied for dealing with solutions of the NP-complete Hamiltonian path problem (HPP). Lipton wrote the second paper that showed that the Adleman techniques could also be used to solve the NP-complete satisfiability (SAT) problem (the first NP-complete problem). Adleman and his co-authors proposed s...
متن کاملOn the Complexity of the Minimum Independent Set Partition Problem
We consider the Minimum Independent Set Partition Problem (MISP) and its dual (MISPDual). The input is a multi-set of N vectors from {0, 1}, where U := {1, . . . , n} is the index set. In MISP, a threshold k is given and the goal is to partition U into a minimum number of subsets such that the projected vectors on each subset of indices has multiplicity at least k, where the multiplicity is the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Science and Information Technology
سال: 2013
ISSN: 0975-4660,0975-3826
DOI: 10.5121/ijcsit.2013.5602